Dynamic Update Siamese Networks with Deeper Features
نویسندگان
چکیده
منابع مشابه
Siamese convolutional networks based on phonetic features for cognate identification
In this paper, we explore the use of convolutional networks (ConvNets) for the purpose of cognate identification. We compare our architecture with binary classifiers based on string similarity measures on different language families. Our experiments show that convolutional networks achieve competitive results across concepts and across language families at the task of cognate identification.
متن کاملa dynamic location update management algorithm in cellular mobile networks
future increase of mobile communication subscribers will require a great capacity expansion of the cellular systems. in order to accommodate the increasing number of subscribers, the cell size will have to be much smaller than current size. therefore, it is predictable that the location updating and paging procedures will produce a major part of signaling traffic in these networks. this pape...
متن کاملLearning Text Similarity with Siamese Recurrent Networks
This paper presents a deep architecture for learning a similarity metric on variablelength character sequences. The model combines a stack of character-level bidirectional LSTM’s with a Siamese architecture. It learns to project variablelength strings into a fixed-dimensional embedding space by using only information about the similarity between pairs of strings. This model is applied to the ta...
متن کاملClass-balanced siamese neural networks
This paper focuses on metric learning with Siamese Neural Networks (SNN). Without any prior, SNNs learn to compute a non-linear metric using only similarity and dissimilarity relationships between input data. Our SNN model proposes three contributions: a tuple-based architecture, an objective function with a norm regularisation and a polar sine-based angular reformulation for cosine dissimilari...
متن کاملLearning Siamese Features for Finger Spelling Recognition
This paper is devoted to finger spelling recognition on the basis of images acquired by a single color camera. The recognition is realized on the basis of learned low-dimensional embeddings. The embeddings are calculated both by single as well as multiple siamese-based convolutional neural networks. We train classifiers operating on such features as well as convolutional neural networks operati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IOP Conference Series: Materials Science and Engineering
سال: 2020
ISSN: 1757-899X
DOI: 10.1088/1757-899x/790/1/012037